ltxprimer-1.0
107
VIII .8. S YMBOLS
z
κ
\digamma
\varkappa
Table VIII . 17 : AMS Hebrew
i
k
ג
\beth
\daleth
\gimel
Table VIII . 18 : AMS Miscellaneous
~
} ♦ @ k H
\hbar
\hslash \lozenge \nexists
\square
]
\measuredangle
a N
\Game
\Bbbk
\blacktriangle
\blacktriangledown \sphericalangle
F
^
\bigstar \diagup
\diagdown
M
O
\vartriangle
\triangledown
s f
∠ `
\circledS
\angle \Finv
\mho
8
∅
\backprime \blacksquare \complement
\varnothing \blacklozenge
{
ð
\eth
Table VIII . 19 : AMS Binary Operators
u Z
e [
r Y
\dotplus \barwedge \boxtimes
\smallsetminus
\Cap
\veebar \boxdot \rtimes
\doublebarwedge
\boxplus
h
n f } d
o g
\ltimes
\leftthreetimes
| >
\curlywedge \circledcirc
\curlyvee \centerdot \boxminus \circledast
\circleddash
\intercal
\Cup
\divideontimes
i
~
\rightthreetimes
Table VIII . 20 : AMS Binary Relations
5 \leqq
6 \leqslant
0 \eqslantless
/ \lessapprox
u
l \lessdot
\approxeq
≶ \lessgtr
Q \lesseqgtr
S \lesseqqgtr v \backsim @ \sqsubset w \precapprox m \Bumpeq & \gtrsim ≷ \gtrless $ \circeq k \supseteqq \Vvdash
: \risingdotseq j \subseteqq 2 \curlyeqprec E \trianglelefteq
; \fallingdotseq
b \Subset - \precsim
\vDash
a \smallfrown > \geqslant
l \bumpeq
1 \eqslantgtr
≫ \ggg
m
\gtrdot
T \gtreqqless
P \eqcirc
∼
≈
\thicksim
\thickapprox
Made with FlippingBook Publishing Software